skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gazel, Esteban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Fluid release associated with serpentinite dehydration (de-serpentinization) during subduction plays a key role in fundamental geological processes such as element transport and recycling, seismicity, and arc magmatism. Although the importance of these fluids is well-known, evidence of de-serpentinization remains scarce in the rock record. Here, we investigated the effects of de-serpentinization and fluid circulation in exhumed metaperidotites from the Raspas Complex (Ecuador). This Early Cretaceous complex records warm subduction (∼13.5 °C/km) and has been hypothesized to represent a coherent slab sliver that preserves the mantle-crust contact (moho) between eclogite-facies metaperidotites and the corresponding crustal section. Petrological observations reveal that titanian-clinohumite-bearing metadunites and banded metaperidotites underwent de-serpentinization after reaching peak pressure–temperatures (P–T) of ∼1.3–1.6 GPa and 620–650 °C. The peak paragenesis is partially obscured by a strong retrograde overprint, driven by crust-derived metamorphic fluids (δ11B ∼ -6 to +8 ‰) that infiltrated at varying fluid/rock ratios, triggering the re-serpentinization of metaperidotites during exhumation (P < 1.3 GPa and 320–400 °C). Thermodynamic forward modeling reveals that fluid release in the Raspas paleo-subduction zone is controlled by brucite breakdown and de-serpentinization, which occur at depths of 25–30 km and ∼50 km, respectively, accounting for a total of up to 10 wt. % H2O of water stored in the rock. Comparatively, dehydration of the crustal section, albeit a minor component, promotes enhanced fluid circulation between 25 and 45 km. During exhumation, circulating crust-derived metamorphic fluids heavily metasomatized the ascending slab sliver and effectively modified its geochemical signature. The depth range of the dehydration reactions overlap the depth of non-volcanic tremors and slow-slip events in warm, active subduction zones worldwide (25–65 km). Thus, the Raspas Complex offers an in-situ window into the fluids responsible for triggering these seismic events. 
    more » « less
    Free, publicly-accessible full text available January 18, 2026
  4. Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid-rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non-collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non-collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in-situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic-Early Cretaceous, and potentially Late Cretaceous-Paleocene high-pressure (HP)–low-temperature metamorphic sequences. Whole-rock trace element data and in-situ B isotopes favor serpentinization by a crust-derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid-Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back-arc basins. Subsequent compressional phases trigger short-lived subduction in the back-arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non-collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back-arc basins. 
    more » « less
  5. Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid-rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non-collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non-collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in-situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic-Early Cretaceous, and potentially Late Cretaceous-Paleocene high-pressure (HP)–low-temperature metamorphic sequences. Whole-rock trace element data and in-situ B isotopes favor serpentinization by a crust-derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid-Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back-arc basins. Subsequent compressional phases trigger short-lived subduction in the back-arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non-collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back-arc basins. 
    more » « less
  6. Abstract Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid‐rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non‐collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non‐collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in‐situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic‐Early Cretaceous, and potentially Late Cretaceous‐Paleocene high‐pressure (HP)–low‐temperature metamorphic sequences. Whole‐rock trace element data and in‐situ B isotopes favor serpentinization by a crust‐derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid‐Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back‐arc basins. Subsequent compressional phases trigger short‐lived subduction in the back‐arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non‐collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back‐arc basins. 
    more » « less
  7. Abstract Volcanic ash emissions impact atmospheric processes, depositional ecosystems, human health, and global climate. These effects are sensitive to the size and composition of the ash; however, datasets describing the constituent phases over size ranges relevant for atmospheric transport and widely distributed impacts are practically nonexistent. Here, we present results of X-ray diffraction measurements on size-separated fractions of 40 ash samples from VEI 2–6 eruptions. We characterize changes in phase fractions with grainsize, tectonic setting, and whole-rock SiO2. For grainsizes < 45 μm, average fractions of crystalline silica and surface salts increased while glass and iron oxides decreased with respect to the bulk sample. Samples from arc and intraplate settings are distinguished by feldspar and clinopyroxene fractions (determined by different crystallization sequences) which, together with glass, comprise 80–100% of most samples. We provide a dataset to approximate glass-free proportions of major crystalline phases; however, glass fractions are highly variable. To tackle this, we describe regressions between glass and major crystal phase fractions that help constrain the major phase proportions in volcanic ash with limited a priori information. Using our dataset, we find that pore-free ash density is well-estimated as a function of the clinopyroxene + Fe-oxide fraction, with median values of 2.67 ± 0.01 and 2.85 ± 0.03 g/cm3for intraplate and arc samples, respectively. Finally, we discuss effects including atmospheric transport and alteration on modal composition and contextualize our proximal airfall ash samples with volcanic ash cloud properties. Our study helps constrain the atmospheric and environmental budget of the phases in fine volcanic ash and their effect on ash density, integral to refine our understanding of the impact of explosive volcanism on the Earth system from single eruptions to global modeling. 
    more » « less
  8. Raman spectroscopy has become the tool of choice for analyzing fluid inclusions and melt inclusion (MI) vapor bubbles as it allows the density of CO2-rich fluids to be quantified. Measurements are often made at ambient temperature (Tamb ~18-25 °C), resulting in reported bulk densities between 0.2 and 0.7 g/mL despite that single-phase CO2 under these conditions is thermodynamically unstable and instead consists of a liquid (~0.7 g/mL), and a vapor phase (~0.2 g/mL). Here, we present results from experiments conducted at Tamb and 37 °C (above the CO2 critical temperature) on 14 natural CO2-rich MI bubbles from Mount Morning, Antarctica. Here, we show that at Tamb, laser power strongly affects the CO2 Raman spectrum of MI bubbles with bulk densities within the miscibility gap. High-power laser heating and low spectral resolution explain why published measurements have reported such bulk densities at Tamb even when using an instrument-specific calibration. 
    more » « less
  9. The asthenosphere plays a fundamental role in present-day plate tectonics as its low viscosity controls how convection in the mantle below it is expressed at the Earth’s surface above. The origin of the asthenosphere, including the role of partial melting in reducing its viscosity and facilitating deformation, remains unclear. Here we analysed receiver-function data from globally distributed seismic stations to image the lower reaches of the asthenospheric low-seismic-velocity zone. We present globally widespread evidence for a positive seismic-velocity gradient at depths of ~150 km, which represents the base of a particularly low-velocity zone within the asthenosphere. This boundary is most commonly detected in regions with elevated upper-mantle temperatures and is best modelled as the base of a partially molten layer. The presence of the boundary showed no correlation with radial seismic anisotropy, which represents accumulated mantle strain, indicating that the inferred partial melt has no substantial effect on the large-scale viscosity of the asthenosphere. These results imply the presence of a globally extensive, partially molten zone embedded within the asthenosphere, but that low asthenospheric viscosity is controlled primarily by gradual pressure and temperature variations with depth. 
    more » « less
  10. Major and trace element abundances, including highly siderophile elements, and 187Os and 182W isotopic compositions were determined for ca. 89 Ma mafic and ultramafic rocks from the islands of Gorgona (Colombia) and Curaçao (Dutch Caribbean). The volcanic systems of both islands were likely associated with a mantle plume that generated the Caribbean Large Igneous Provence. The major and lithophile trace element characteristics of the rocks examined are consistent with the results of prior studies, and indicate derivation from both a chemically highly-depleted mantle component, and an enriched, or less highly-depleted mantle component. Highly siderophile element abundances for these rocks are generally similar to rocks with comparable MgO globally, indicating that the major source components were not substantially enriched or depleted in these elements. Rhenium-Os isotopic systematics of most rocks of both islands indicate derivation from a mantle source with an initial 187Os/188Os ratio between that of the contemporaneous average depleted mid-ocean ridge mantle and bulk silicate Earth. The composition may reflect either an average lower mantle signature, or global-scale Os isotopic heterogeneity in the upper mantle. Some of the basalts, as well as two of the komatiites, are characterized by calculated initial 187Os/188Os ratios 10-15% higher than the chondritic reference. These more radiogenic Os isotopic compositions do not correlate with major or trace element systematics, and indicate a mantle source component that was most likely produced by either sulfide metasomatism or ancient Re/Os fractionation. Tungsten-182 isotopic compositions measured for rocks from both islands are characterized by variable 182W values ranging from modern bulk silicate Earth-like to strongly negative values. The 182W values do not correlate with major/trace element abundances or initial 187Os/188Os compositions. As with some modern ocean island basalt systems, however, the lowest 182W value (-53) measured, for a Gorgona olivine gabbro, corresponds with the highest 3He/4He previously measured from the suite (15.8 R/RA). Given the lack of correlation with other chemical/isotopic compositions, the mantle component characterized by negative 182W and possibly high 3He/4He is most parsimoniously explained to have formed as a result of isotopic equilibration between the mantle and core at the core-mantle boundary. 
    more » « less